Crim1 regulates integrin signaling in murine lens development
نویسندگان
چکیده
The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1(glcr11), which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1(null) and Crim1(cko), we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development.
منابع مشابه
Dev125591 356..366
The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a...
متن کاملExpression of Crim1 during murine ocular development
Crim1 (cysteine-rich motor neuron 1), a novel gene encoding a putative transmembrane protein, has recently been isolated and characterized (Kolle, G., Georgas, K., Holmes, G.P., Little, M.H., Yamada, T., 2000. CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech. Dev. 90, 181-193). Crim1 co...
متن کاملReview Crim1–, a regulator of developmental organogenesis
availability and activity is critical during embryogenesis to ensure appropriate organogenesis. This process is regulated through the coordinated expression of growth factors and their cognate receptors, as well as via proteins that can bind, sequester or localize growth factors to distinct locations. One such protein is the transmembrane protein Crim1. This protein has been shown to be express...
متن کاملCrim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling
Angiogenesis defines the process in which new vessels grow from existing vessels. Using the mouse retina as a model system, we show that cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is highly expressed in angiogenic endothelial cells. Conditional deletion of the Crim1 gene in vascular endothelial cells (VECs) causes delayed vessel expansion and reduced vessel density. B...
متن کاملβ1-Integrin Signaling is Essential for Lens Fiber Survival
Integrins have been proposed to play a major role in lens morphogenesis. To determine the role of beta1-integrin and its down-stream signaling partner, integrin linked kinase (ILK), in lens morphogenesis, eyes of WT mice and mice with a nestin-linked conditional knockout of beta1-integrin or ILK were analyzed for defects in lens development. Mice, lacking the genes encoding the beta1-integrin s...
متن کامل